# **CHAPTRE TWO**

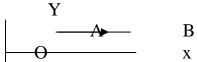
# **VECTORS**

- A vector is a physical quantity which has both magnitude and direction.
- Example are
  - a. A force of 20N acting North.
  - b. A velocity of 5km/h East.

# **Types of vectors:**

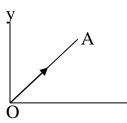
- In general the are two types and these are
  - i. Free vector.
  - ii. Position vector.

#### **Free vector:**



- A free vector is a vector which does not pass through any specific position.
- They are usually represented by small letters e.g e.g  $\stackrel{a}{\sim}, \stackrel{b}{\sim}$  and  $\stackrel{c}{\sim}$

## **Position vector :**



This is a vector which passes through the origin or a specified point.

## **Vector notation:**

- A vector may be represented by a line segment as shown next:

#### A\_\_\_\_\_B

- This given vector can be represented by  $\overrightarrow{AB}$ ,  $\overrightarrow{AB$ 

#### The Triangle law:



According to the triangle law,  $\overline{AC} = \overline{AB} + \overline{BC} \implies \overline{AB} = \overline{AC} - \overline{BC}$  and  $\overline{BC} = \overline{AC} - \overline{AB}$ 

#### The unit vector:

- This is a vector whose magnitude is one in the direction under consideration.
- The unit vector along a vector  $\vec{a}$  is written as  $\hat{a}$
- Also the unit vector along a vector  $\vec{b}$  is written as  $\hat{b}$
- The unit vector along the vector  $\overline{BC}$  is written as  $\widehat{BC}$
- Consider the vector  $A \longrightarrow B = 1$
- The vector is written as  $\overrightarrow{AB}$  and its unit vector is written as  $\widehat{AB}$ .

#### **Equal vectors:**

- Two vectors are said to be equal if their magnitudes and directions are equal
- Example are  $\overline{AB} = 50 km/hE$  and  $\overline{CD} = 50 km/hE$ .

#### The negative vector:

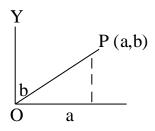
- The negative of the vector  $\stackrel{a}{\sim}$  is written as -a
- If  $\stackrel{-a}{\sim}$  is the negative vector of the vector  $\stackrel{a}{\sim}$ , then  $\stackrel{a}{\sim} + (\stackrel{-a}{\sim}) = \stackrel{o}{\sim}$ .
- The vector  $\stackrel{-a}{\sim}$  is a vector of the same magnitude as  $\stackrel{a}{\sim}$ , but it is opposite in direction.
- It must be noted that  $\overline{AB} + \overline{BA} =_{\sim}^{O}$ .
- Also if  $\stackrel{b}{\sim} = \overrightarrow{CD}$ , then  $\stackrel{-b}{\sim} = \overrightarrow{DC}$ , and  $\overrightarrow{CD} + \overrightarrow{DC} = \stackrel{O}{\sim}$ .
- If we consider a vector  $\overline{CD}$ , then its negative vector is  $\overline{DC}$ .

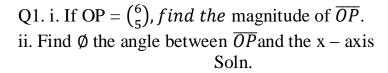
#### The zero vector (null vector):

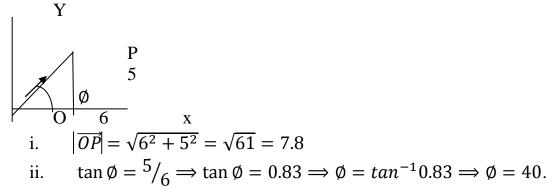
- This is a vector where magnitude is zero and its direction is undefined.
- It is represented by  $\underline{0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

#### Notation of the magnitude of a vectors:

- If  $\overline{AB}$  is a vector, then its magnitude is written as  $|\overline{AB}|$
- Similarly the magnitude of the vector  $\vec{b}$  is written as  $|\vec{b}|$
- If  $\overline{OP} = {a \choose b}$ , then its magnitude  $= |\overline{OP}| = \sqrt{a^2 + b^2}$



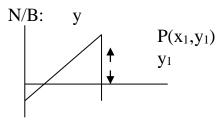




#### **Scalar multiplication of vector:**

- If  $\hat{a}$  is the scalar and  $\overline{a}$  is the vector, then the scalar x the vector =  $\hat{a}$
- When a scalar multiplies a vector, the product is also a vector, and for this reason  $\overline{a}$  is also a vector.
- The vector  $\bigwedge_{\sim}^{a}$  is parallel to  $\stackrel{a}{\sim}$ , and is in the same direction as  $\stackrel{a}{\sim}$ , but has  $\bigwedge$  times the magnitude of  $\stackrel{a}{\sim}$ .
- For example the vectors  $\vec{a}$  and  $2\vec{a}$  have the same direction. i.e\_\_\_\_ $|\vec{a}|$ \_\_\_\_ $|2\vec{a}|$ \_\_\_\_
- But the vectors  $\vec{a}$  and and  $-2\vec{a}$  are opposite in direction.

- Also  $(2+4) \vec{a} = 2\vec{a} + 4\vec{a}$
- Finally  $^{1}(^{2}\vec{a}) = ^{1}\hat{a}, e.g \ 3(2\vec{a}) = 6\vec{a}$



 $\leftarrow O \rightarrow x_1$ 

- If P(x<sub>1</sub>,y<sub>1</sub>) is a point in the x y plane, then the position vector of P relative to the origin, O is defined by  $\overrightarrow{OP} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$
- Also if A = (0,6), then  $\overrightarrow{OA} = \begin{pmatrix} 0 \\ 6 \end{pmatrix}$

Q2. Find the numbers m and n such that  

$$M\binom{3}{5} + n\binom{2}{1} = \binom{4}{9}$$
Soln.  

$$M\binom{3}{5} + n\binom{2}{1} = \binom{4}{9} \Rightarrow \binom{3m}{5m} + \binom{2n}{n} = \frac{4}{9}$$

$$\Rightarrow 3m + 2n = 4 \dots \dots eqn(1).$$

$$5m + n = 9 \dots \dots eqn(2)$$
Solve eqns (1) and (2) simultaneously  

$$\Rightarrow m = 2 \text{ and } n = -1$$
Q3. If mp + nq =  $\binom{4}{3}$ , find m and n where m and n are scalar, given that p  

$$= \binom{2}{3} \text{ and } q = \binom{2}{5}$$
Soln.  

$$p = \binom{2}{3} \text{ and } q = \binom{2}{5} \text{ but } mp + nq = \binom{4}{3}$$

$$\Rightarrow m\binom{2}{3} + n\binom{2}{5} = \binom{4}{3} \Rightarrow \binom{2m}{3m} + \binom{2n}{5m} = \binom{4}{3}$$

$$\Rightarrow 2m + 2n = 4 - (1)$$

3m + 5n = 3 - (3)Solve eqns (1) and (2) simultaneously to get the values of m and n. Q4. If  $r = \binom{3}{1}$  and  $s = \binom{-2}{1}$ , evaluate 6(r + 25)Soln.

Consider 6(r + 2s), solve what is inside the bracket first  $\Rightarrow r + 2s = \binom{3}{1} + \binom{-2}{1} = \binom{3}{1} + 2\binom{-4}{2} \Rightarrow r + 2s = \binom{3+\overline{4}}{1+2} = \binom{-1}{3} \Rightarrow 6(r + 2s) = 6\binom{-1}{3} = \binom{-6}{18}$ Q5. If  $p = \binom{1}{2}$ ,  $q = \binom{-2}{3}$  and  $r = \binom{1}{1}$ , find 2p - q + rSoln.  $2p - q + r = 2\binom{1}{2} - \binom{-2}{3} + \binom{1}{1} = \binom{2}{4} - \binom{-2}{3} + \binom{1}{1} = \binom{2+2+1}{4-3+1} = \binom{5}{2} \Rightarrow 2p - q + r = \binom{5}{2}$ .